
Are You Cool Enough for Low Temperature Solders?

Jan 16, 2025

Tony Lentz tlentz@fctassembly.com

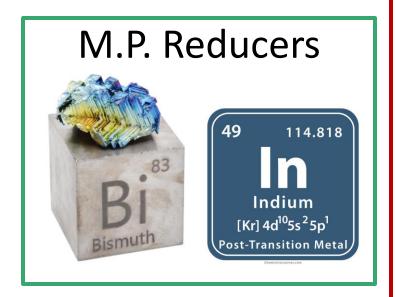
Agenda

- Low Temperature Solder Alloys (Lead-Free)
 - Sn/Bi57/X (138-140 °C) and Sn/BiX/+X (138-174 °C)
 - Alloy Ingredients and Phase Diagrams
 - Microstructure Properties
- Applications for Low Temp Alloys
- Assembly Process
 - Reflow Profiles
 - Soldering SAC305 BGAs with Low Temp Solders
 - Hand Soldering, Rework & Other Processes
- Concerns
- Advantages & Disadvantages of Low Temp Alloys
- Summary and Questions

Low Temperature Solders

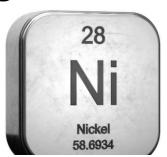
What is Low Temperature?

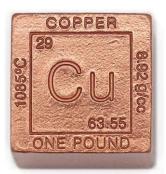
- Commonly defined as having a peak reflow temperature < 200 °C
- SAC305 has a peak reflow ~245 °C
- Sn/Pb37 has a peak reflow ~215 °C


Low Temperature Solder Alloys

Solder Alloy	Composition (% wt)	Melting Range (°C)
Sn/Pb	Sn63/Pb37 or Sn62/Pb36/Ag2	179 - 183
SAC305	Sn96.5/Ag3.0/Cu0.5	217 - 220
Tin-Bismuth	Sn/Bi58 or Sn/Bi57/Ag0.4-1.0	138 - 140
Proprietary Alloy 1	Sn/Bi/X	138 - 151
Proprietary Alloy 2	Sn/Bi/X	Peak reflow < 150
Proprietary Alloy 3	Sn/Bi37/X	139 - 174
Sn/Bi40	Sn60/Bi40	138 - 170
Sn/In52	Sn48/In52	118
Sn34/Bi46/Pb20	Sn34/Bi46/Pb20	96

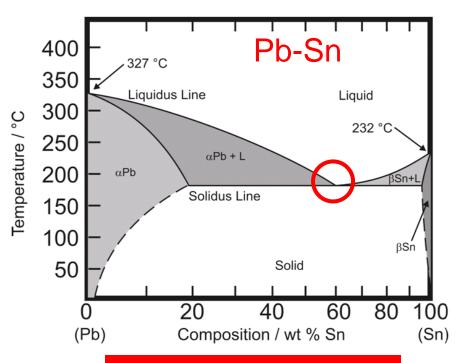
Peak reflow temperature is typically ~ 20-30C above m.p.

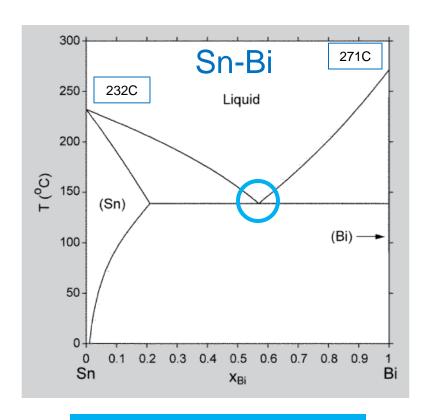



Alloy Ingredients

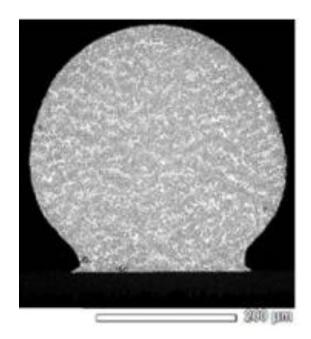


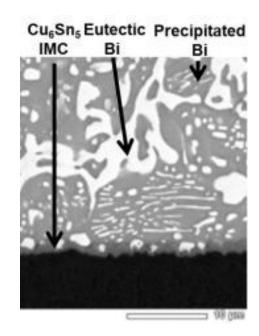
Strengtheners





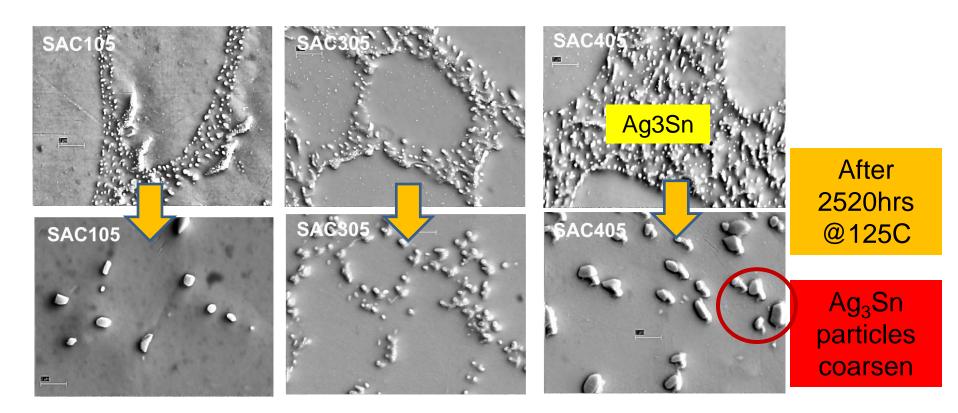
Phase Diagrams


Eutectic m.p. 183C

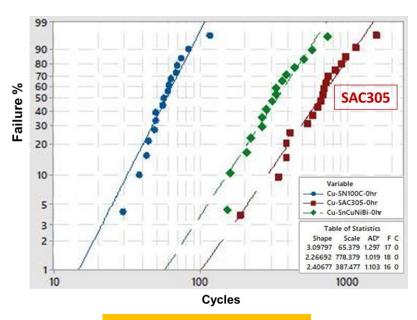


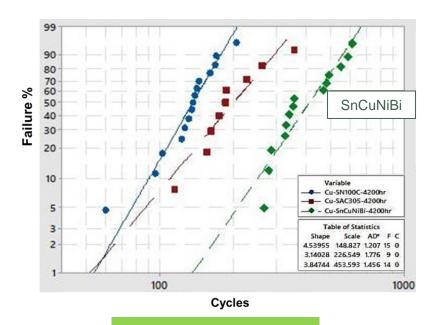
Eutectic m.p. 138C

Solder Microstructure - Bi



Microstructure of reflowed Sn/Bi37/X


*SMTAI 2019. Sweatman, "OPTIMIZING SOLDER ALLOY COMPOSITION FOR LOW TEMPERATURE ASSEMBLY"


Solder Microstructure - Ag

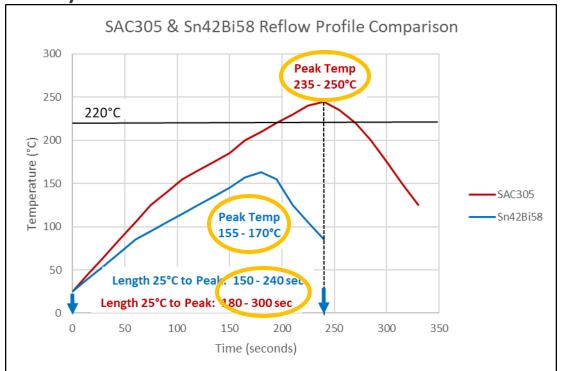
Solder Microstructure - Ag

Cu Substrate As Soldered

Cu Substrate 4200 hrs 125C

Applications

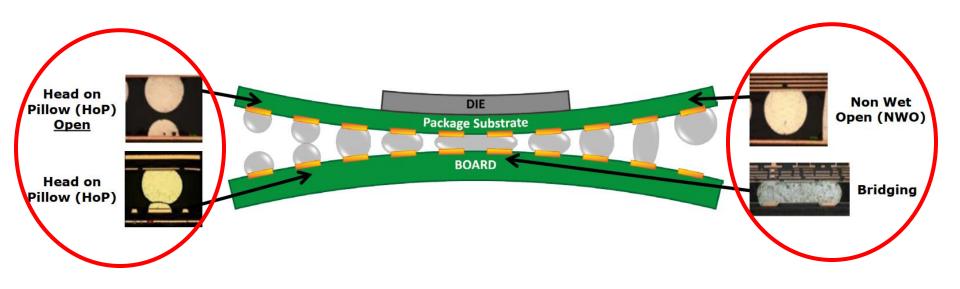
Applications for Low Temp Solders



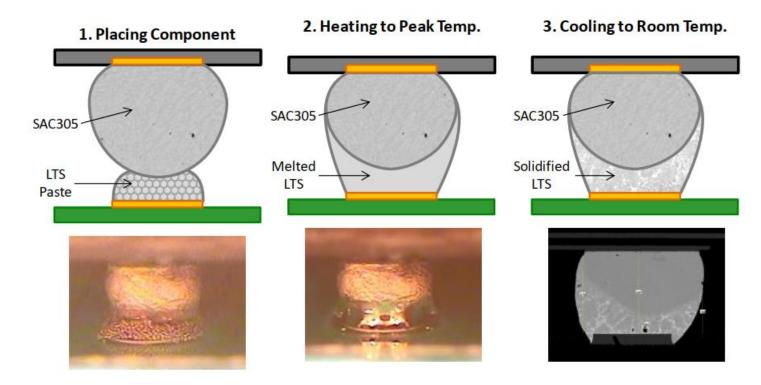
Applications for Low Temp Solders

- Operating temp max < 130°C
- Low potential for drop shock & vibration
 - •Underfill & encapsulation help but add \$\$
- Difficulty of reworking BGAs & BTCs
- Class 1 and 2 Products with "Short" expected life

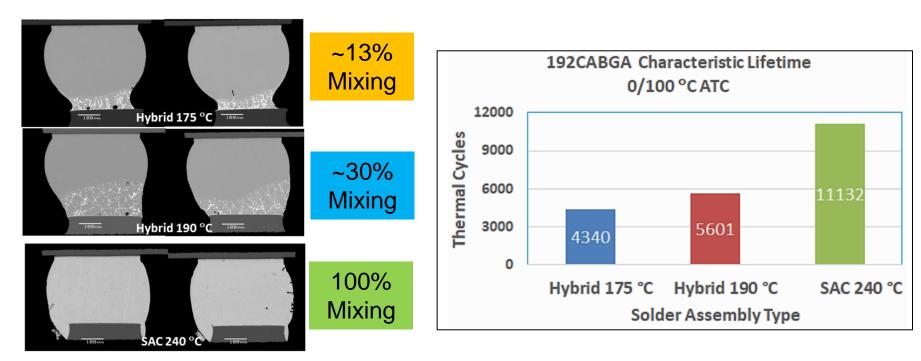
Assembly Process


Assembly Process - Reflow

Peak temperature 80C lower & 60 seconds less time in the oven.


Assembly Process – HoP & NWO

*IPC APEX 2019. Tseng, "New Generation, Low-Temperature Lead-Free Solder for SMT Assembly"



Mixed Metal SAC305 BGA & LT Solder Paste

*IPC APEX 2019. Tseng, "New Generation, Low-Temperature Lead-Free Solder for SMT Assembly"

Mixed Metal SAC305 BGA & LT Solder Paste

^{*}SMTAI 2021. Coyle, "The Effect of Peak Reflow Temperature on Thermal Cycling Performance and Failure Mode of Low Temperature Hybrid Solder Joints"

Hand Soldering & Rework

Hand Soldering

- LTS joint requires less heat
 - Iron temp 290°C vs. 390°C
- Sn/Bi57/Ag available as solid wire
 - Limited sources of flux core
- Other alloys of wire not available
- •Fluxes for this?

Hand Soldering & Rework

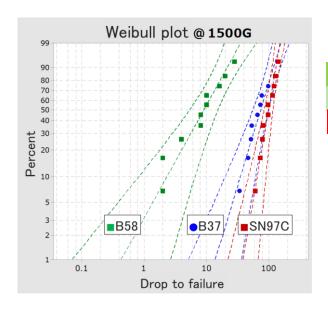
Rework

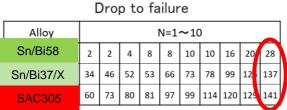
- LTS BGA rework at 190-200°C
- Mixing LTS joints with SAC305 wire
- Rework SAC305 BGA with nearby LTS
- Local printing of LTS paste
- •LTS oxides & wetting?

Selective Soldering

- LTS usable but challenging
- High levels of additives may cause dross (Cu,Ni)₆Sn₅ "needles"
- Clogged nozzles from oxidation and dross
- Nitrogen use is key

*IPC APEX 2022. Diepstraten, "Solder Alloy Contribution to Robust Selective Soldering Process"

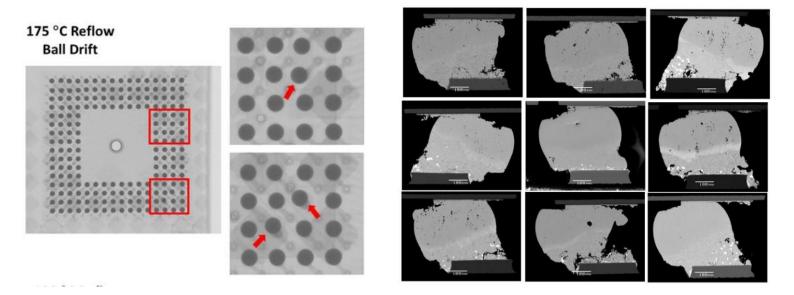



Concerns

Concerns – SnBi Brittleness

Poor mechanical shock & fatigue

Reducing Bi & additives improve this



Concerns – Hybrid SAC305 & LTS Ball Drift

Ball drift seen during thermal cycling

^{*}SMTAI 2021. Coyle, "The Effect of Peak Reflow Temperature on Thermal Cycling Performance and Failure Mode of Low Temperature Hybrid Solder Joints"

Concerns – Hybrid SAC305 & LTS Hot Tear

- Caused by warpage + slow wetting on the PCB pad
- Smaller BGA's
- Related to Non wet opens (NWO)
- Increased paste volume & reduced peak temp help

*SMTAI 2019. Harris, "ROOT CAUSE AND SOLUTION TO MITIGATE THE HOT TEAR DEFECT MODE IN HYBRID SAC-LOW TEMPERATURE SOLDER JOINTS"

Advantages & Disadvantages

Advantages of Low Temp Solder

- Energy savings
- Less thermal damage
- Lower warpage of PCBs & components
 - Less HoP & NWO
- Use of temperature sensitive devices
- Eliminate re-melting of 1st SMT

Disadvantages of Low Temp Solder

- Sn/Bi58 solders can be brittle
 - Sn/Bi + X additives increase ductility
- Sn/Bi solders expand during freezing
- Sn/Bi + Pb mixture very low melting (96°C)
- Sn/In solders can be costly
 - Indium ~ \$158 / lb. Bismuth ~ \$6 / lb.
- Rework SAC305 BGA with nearby Sn/Bi

Summary

Summary

- ✓ Sn/Bi/X solders have reliability approaching SAC305
- ✓ Cost savings from energy usage & improved yields
- ✓ Concerns about rework & hand soldering
- ✓ Concerns about hybrid SAC305 & LTS solder joints

Thank You!

Tony Lentz tlentz@fctassembly.com

